

THE CDIO APPROACH TO ENGINEERING EDUCATION: 6. Adapting And Implementing The CDIO Approach

Helene Leong (helene_leong@sp.edu.sg)

Revised June 2010

SESSION SIX

SESSION SIX OBJECTIVES

Recognize key factors that influence change in an organization

Examine the implementation process in a selected CDIO program

Describe resources that facilitate the adoption of CDIO in engineering programs

KEY FACTORS THAT PROMOTE CULTURAL CHANGE

GETTING OFF TO THE RIGHT START

- 1 Understanding the need for change
- 2 Leadership from the top
- 3 Creating a vision
- 4 Support of early adopters
- 5 Early successes

BUILDING MOMENTUM IN THE CORE ACTIVITIES OF CHANGE

- 6 Moving off assumptions
- 7 Including students as agents of change
- 8 Involvement and ownership
- 9 Adequate resources

(See Handbook, pp. 34-36)

INSTITUTIONALIZING CHANGE

- 10 Faculty recognition and incentives
- 11 Faculty learning culture
- 12 Student expectations and academic requirements

EXAMPLES: #5 EARLY SUCCESSES

- Identify learning outcomes for several courses.
- Start, or modify, a first-year engineering course that includes a simple design-implement experience.
- Modify an upper-level course to include a simple, lowcost design-implement experience.
- Modify an appropriate meeting room or flexible classroom space to create a design-implement workspace that supports hands-on and social learning.

EXAMPLES: #11 FACULTY LEARNING CULTURE

Enhancement of CDIO Skills

- Hire faculty with industrial experience
- Give new hires a year to gain experience before beginning program responsibilities
- Create educational programs for current faculty
- Provide faculty with leave to work in industry
- Encourage outside professional activities that give faculty appropriate experiences
- Recruit senior faculty with significant professional engineering experience

EXAMPLES: #11 FACULTY LEARNING CULTURE

Enhancement of Teaching Skills

- Hire faculty with interest in education and ask them to discuss teaching during their interviews
- Encourage faculty to take part in CDIO workshops
- Connect with the teaching and learning centers at your universities
- Invite guest speakers on teaching topics
- Organize coaching by educational professionals or distinguished peers
- Participate in teaching mentorship programs

ACTIVITY: KEY CHANGE FACTORS

Working with the key change factor assigned to your group, and the descriptions found in the Handbook, pp. 34-36

- Discuss what the factor means
- List 3 or 4 examples of ways that you can apply that change factor in your engineering program
- Share an example with the whole group

AN IMPLEMENTATION STORY

The Change Process At Singapore Polytechnic

CDIO @ SINGAPORE POLYTECHNIC

- CDIO collaborator since 2004 piloted in the School of Electrical and Electronic Engineering
- Adopted by 5 academic schools
 - □ in 2007
 - Architecture and the Built Environment
 - Chemical and Life Sciences
 - Electrical and Electronic Engineering
 - Mechanical and Aeronautical Engineering
 - □ In 2009
 - Digital Media and Info-comm Technology
- Implemented in 15 programs

UNDERSTANDING THE NEED FOR CHANGE

- A new education model that produce graduates geared to the needs of the 21st century
 - o Global mindset,
 - Creative, innovative and enterprising, and
 - Competent in areas beyond their core discipline,
 - o Grounded in a strong set of core values

Domain knowledge

FORMULATING AN EDUCATION MODEL OF THE FUTURE

Redesign the curriculum for the program as a whole to infuse

- key process / life skills
- dispositions (e.g. values / ethics and CIE)

domain knowledge and skills.

Domain knowledge

LEADING THE CHANGE

- Identify early adopters and owners
 - Workgroup to lead the change meetings once a week
 - Experimenters, influential, dare to make changes
 - Equipped with good knowledge of CDIO and its practices - CDIO conference and collaborators' meetings
 - Support of management in school's strategic plans

SP CDIO COMMITTEE - SP LEVEL

- Tasked to adapt the CDIO initiative to SP's context
 - Understand CDIO framework and practices
 - Customise CDIO syllabus for SP
 - Suggest appropriate approaches, activities and assessment
 - Conduct training/workshops
 - Conduct evaluation
 - Set up website for sharing of resources
- Made up of representatives of the 5 schools and the Educational Development Department.

CDIO WORK GROUPS – SCHOOL LEVEL

Work Groups formed to implement CDIO

- Decide and select courses directly affected by CDIO implementation
- Decide on which skills to infuse into courses
- Decide on T&L activities required to infuse skills
- Ensure technical courses are well integrated
- Ensure that assessment schemes are in place
- Ensure that course and program documentation is updated
- Co-ordinate training for faculty in CDIO framework

Before

- Learning outcome is determined by "what we think students are capable of doing"
- Courses are still largely "independent", ie. compartmentalized learning and not integrative

With CDIO

- Learning outcome is determined by what the graduates are expected to do, ie job competency
- Courses are integrated to support the job competency.

Before

- Few opportunities for Conceive, some Design, mostly Implement and Operate.
- Assessment is heavy on testing knowledge

With CDIO

 Balanced treatment of CDIO elements

 Assessment of application of knowledge and CDIO skills enhanced

- Integrated Curriculum Existing courses reorganised and linked. Some courses merged or removed.
- Syllabuses revised to incorporate the CDIO skills

Year 1:

Personal Skills and Attitudes, Teamwork, Communication

Year 2:

Conceive, Design, System Thinking, Experimentation and Knowledge Discovery

Year 3:

Professional Skills and Attitudes, C-D-I-O

New Courses:

- Introduction to Engineering course in 1st year
- Teamwork and Communication Skills in 1st year
- Design Implement experiences in 2nd year (emphasis on C & D)
- Revised Final Year Project in the 3rd year (C-D-I-O)

Greater emphasis on

- Assessment of skills
- Integrated learning experiences
- Active Learning

Professional Development

CDIO @ SP WEBSITE

CDIO @ SP WEBSITE

EVALUATION

Purpose of the Evaluation

 To provide a structured research driven approach to monitor and review the implementation of the CDIO Framework

EVALUATION – RESEARCH QUESTIONS

- Were the learning outcomes, learning activities and assessments aligned?
- Were the learning of the courses integrated?
- How has the integration of the CDIO skills into the syllabuses impacted the students?
- What were the faculty's perception of the curriculum changes and their impact on students' competence in the selected CDIO skills and interest in subject?

EVALUATION METHODS

- Examination of a range of curriculum materials
- Student questionnaires
- Student Blogs
- Focus group interviews with students and faculty teaching the CDIO programs
- Observation of selected lessons (e.g., those incorporating activities related to selected CDIO skills)

ACHIEVEMENTS

2009 - Hosted the 5th International CDIO Conference

2010 - SP's School of Chemical & Life Sciences

- first winner of the "Excellence in Education and Training in Chemical Engineering"
- awarded by IChemE (UK)
- for adopting the CDIO Framework to deliver the best educational experience to students.

ADVICE FOR ADOPTERS

- Evaluate your program. What are your strengths and weaknesses with respect to the CDIO Syllabus?
- Identify some early successes (5. Early Successes)
 - Easy to implement
 - Quick payoff
 - Visible results
- Generate buy-in from faculty (8. Involvement and Ownership)
 - Give them tools to help with changes
 - Reward faculty who embrace CDIO
 - Give faculty ownership in the project
- Be ready to assess changes
- Identify resources needed before you embark on large changes – especially project-based courses (9. Adequate Resources)

TO LEARN MORE ABOUT CDIO ...

OPEN-SOURCE RESOURCES

Available at http://www.cdio.org

- The CDIO Syllabus
- The CDIO Standards
- Start-Up Guidance
- Implementation Kit (I-Kit)
- Instructional Resource Materials (IRMs)

Other

- Rethinking Engineering Education: The CDIO Approach by Crawley, Malmqvist, Östlund, & Brodeur, 2007
- Annual international CDIO conference
- Local, regional, and international workshops

ACTIVITY: DISCUSSION

CHALLENGES

Identify 3 key challenges that you face in implementing a CDIO approach in your program.

What resources can you draw on to address these challenges?

See Handbook, pp. 37-39 for Frequently Asked Questions

SUMMARY: How much progress did you make toward the workshop objectives?

	Little or no progress	Some progress	Very good progress
Explain the CDIO approach to engineering education			
Determine ways in which the CDIO approach may be adapted to your own programs			
Share your ideas and experiences of engineering education reform			
Other (please specify)		(See Handbo	ok, p. 42)

Please write additional comments on the back of this page.

Thank You!

Helene Leong
Deputy Director
Educational Development Department
Singapore Polytechnic
helene_leong@sp.edu.sg